Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
2.
Front Neurol ; 14: 1174079, 2023.
Article in English | MEDLINE | ID: mdl-37521302

ABSTRACT

The Innovative Medicines Initiative (IMI), was a European public-private partnership (PPP) undertaking intended to improve the drug development process, facilitate biomarker development, accelerate clinical trial timelines, improve success rates, and generally increase the competitiveness of European pharmaceutical sector research. Through the IMI, pharmaceutical research interests and the research agenda of the EU are supported by academic partnership and financed by both the pharmaceutical companies and public funds. Since its inception, the IMI has funded dozens of research partnerships focused on solving the core problems that have consistently obstructed the translation of research into clinical success. In this post-mortem review paper, we focus on six research initiatives that tackled foundational challenges of this nature: Aetionomy, EMIF, EPAD, EQIPD, eTRIKS, and PRISM. Several of these initiatives focused on neurodegenerative diseases; we therefore discuss the state of neurodegenerative research both at the start of the IMI and now, and the contributions that IMI partnerships made to progress in the field. Many of the initiatives we review had goals including, but not limited to, the establishment of translational, data-centric initiatives and the implementation of trans-diagnostic approaches that move beyond the candidate disease approach to assess symptom etiology without bias, challenging the construct of disease diagnosis. We discuss the successes of these initiatives, the challenges faced, and the merits and shortcomings of the IMI approach with participating senior scientists for each. Here, we distill their perspectives on the lessons learned, with an aim to positively impact funding policy and approaches in the future.

3.
Nat Rev Neurol ; 19(6): 371-383, 2023 06.
Article in English | MEDLINE | ID: mdl-37208496

ABSTRACT

The global burden of neurological disorders is substantial and increasing, especially in low-resource settings. The current increased global interest in brain health and its impact on population wellbeing and economic growth, highlighted in the World Health Organization's new Intersectoral Global Action Plan on Epilepsy and other Neurological Disorders 2022-2031, presents an opportunity to rethink the delivery of neurological services. In this Perspective, we highlight the global burden of neurological disorders and propose pragmatic solutions to enhance neurological health, with an emphasis on building global synergies and fostering a 'neurological revolution' across four key pillars - surveillance, prevention, acute care and rehabilitation - termed the neurological quadrangle. Innovative strategies for achieving this transformation include the recognition and promotion of holistic, spiritual and planetary health. These strategies can be deployed through co-design and co-implementation to create equitable and inclusive access to services for the promotion, protection and recovery of neurological health in all human populations across the life course.


Subject(s)
Brain , Global Health , International Cooperation , Nervous System Diseases , Neurology , Humans , Biomedical Research , Environmental Policy , Global Health/trends , Goals , Holistic Health , Mental Health , Nervous System Diseases/epidemiology , Nervous System Diseases/prevention & control , Nervous System Diseases/rehabilitation , Nervous System Diseases/therapy , Neurology/methods , Neurology/trends , Spiritualism , Stakeholder Participation , Sustainable Development , World Health Organization
4.
Front Aging Neurosci ; 15: 1076657, 2023.
Article in English | MEDLINE | ID: mdl-36861121

ABSTRACT

The Parkinson's Progression Markers Initiative (PPMI) has collected more than a decade's worth of longitudinal and multi-modal data from patients, healthy controls, and at-risk individuals, including imaging, clinical, cognitive, and 'omics' biospecimens. Such a rich dataset presents unprecedented opportunities for biomarker discovery, patient subtyping, and prognostic prediction, but it also poses challenges that may require the development of novel methodological approaches to solve. In this review, we provide an overview of the application of machine learning methods to analyzing data from the PPMI cohort. We find that there is significant variability in the types of data, models, and validation procedures used across studies, and that much of what makes the PPMI data set unique (multi-modal and longitudinal observations) remains underutilized in most machine learning studies. We review each of these dimensions in detail and provide recommendations for future machine learning work using data from the PPMI cohort.

5.
Sensors (Basel) ; 22(18)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36146181

ABSTRACT

Now that wearable sensors have become more commonplace, it is possible to monitor individual healthcare-related activity outside the clinic, unleashing potential for early detection of events in diseases such as Parkinson's disease (PD). However, the unsupervised and "open world" nature of this type of data collection make such applications difficult to develop. In this proof-of-concept study, we used inertial sensor data from Verily Study Watches worn by individuals for up to 23 h per day over several months to distinguish between seven subjects with PD and four without. Since motor-related PD symptoms such as bradykinesia and gait abnormalities typically present when a PD subject is walking, we initially used human activity recognition (HAR) techniques to identify walk-like activity in the unconstrained, unlabeled data. We then used these "walk-like" events to train one-dimensional convolutional neural networks (1D-CNNs) to determine the presence of PD. We report classification accuracies near 90% on single 5-s walk-like events and 100% accuracy when taking the majority vote over single-event classifications that span a duration of one day. Though based on a small cohort, this study shows the feasibility of leveraging unconstrained wearable sensor data to accurately detect the presence or absence of PD.


Subject(s)
Deep Learning , Parkinson Disease , Wearable Electronic Devices , Gait , Humans , Hypokinesia/diagnosis , Parkinson Disease/diagnosis
6.
J Neurotrauma ; 39(7-8): 436-457, 2022 04.
Article in English | MEDLINE | ID: mdl-35057637

ABSTRACT

Multi-modal biomarkers (e.g., imaging, blood-based, physiological) of unique traumatic brain injury (TBI) endophenotypes are necessary to guide the development of personalized and targeted therapies for TBI. Optimal biomarkers will be specific, sensitive, rapidly and easily accessed, minimally invasive, cost effective, and bidirectionally translatable for clinical and research use. For both uses, understanding how TBI biomarkers change over time is critical to reliably identify appropriate time windows for an intervention as the injury evolves. Biomarkers that enable researchers and clinicians to identify cellular injury and monitor clinical improvement, inflection, arrest, or deterioration in a patient's clinical trajectory are needed for precision healthcare. Prognostic biomarkers that reliably predict outcomes and recovery windows to assess neurodegenerative change and guide decisions for return to play or duty are also important. TBI biomarkers that fill these needs will transform clinical practice and could reduce the patient's risk for long-term symptoms and lasting deficits. This article summarizes biomarkers currently under investigation and outlines necessary steps to achieve short- and long-term goals, including how biomarkers can advance TBI treatment and improve care for patients with TBI.


Subject(s)
Brain Injuries, Traumatic , Biomarkers , Brain Injuries, Traumatic/diagnosis , Brain Injuries, Traumatic/genetics , Brain Injuries, Traumatic/therapy , Humans , Prognosis
7.
Metabolites ; 11(9)2021 Sep 08.
Article in English | MEDLINE | ID: mdl-34564425

ABSTRACT

Metabolomics methods often encounter trade-offs between quantification accuracy and coverage, with truly comprehensive coverage only attainable through a multitude of complementary assays. Due to the lack of standardization and the variety of metabolomics assays, it is difficult to integrate datasets across studies or assays. To inform metabolomics platform selection, with a focus on posttraumatic stress disorder (PTSD), we review platform use and sample sizes in psychiatric metabolomics studies and then evaluate five prominent metabolomics platforms for coverage and performance, including intra-/inter-assay precision, accuracy, and linearity. We found performance was variable between metabolite classes, but comparable across targeted and untargeted approaches. Within all platforms, precision and accuracy were highly variable across classes, ranging from 0.9-63.2% (coefficient of variation) and 0.6-99.1% for accuracy to reference plasma. Several classes had high inter-assay variance, potentially impeding dissociation of a biological signal, including glycerophospholipids, organooxygen compounds, and fatty acids. Coverage was platform-specific and ranged from 16-70% of PTSD-associated metabolites. Non-overlapping coverage is challenging; however, benefits of applying multiple metabolomics technologies must be weighed against cost, biospecimen availability, platform-specific normative levels, and challenges in merging datasets. Our findings and open-access cross-platform dataset can inform platform selection and dataset integration based on platform-specific coverage breadth/overlap and metabolite-specific performance.

8.
Front Behav Neurosci ; 15: 652636, 2021.
Article in English | MEDLINE | ID: mdl-34054443

ABSTRACT

Posttraumatic stress disorder (PTSD) is a mental health condition triggered by experiencing or witnessing a terrifying event that can lead to lifelong burden that increases mortality and adverse health outcomes. Yet, no new treatments have reached the market in two decades. Thus, screening potential interventions for PTSD is of high priority. Animal models often serve as a critical translational tool to bring new therapeutics from bench to bedside. However, the lack of concordance of some human clinical trial outcomes with preclinical animal efficacy findings has led to a questioning of the methods of how animal studies are conducted and translational validity established. Thus, we conducted a systematic review to determine methodological variability in studies that applied a prominent animal model of trauma-like stress, single prolonged stress (SPS). The SPS model has been utilized to evaluate a myriad of PTSD-relevant outcomes including extinction retention. Rodents exposed to SPS express an extinction retention deficit, a phenotype identified in humans with PTSD, in which fear memory is aberrantly retained after fear memory extinction. The current systematic review examines methodological variation across all phases of the SPS paradigm, as well as strategies for behavioral coding, data processing, statistical approach, and the depiction of data. Solutions for key challenges and sources of variation within these domains are discussed. In response to methodological variation in SPS studies, an expert panel was convened to generate methodological considerations to guide researchers in the application of SPS and the evaluation of extinction retention as a test for a PTSD-like phenotype. Many of these guidelines are applicable to all rodent paradigms developed to model trauma effects or learned fear processes relevant to PTSD, and not limited to SPS. Efforts toward optimizing preclinical model application are essential for enhancing the reproducibility and translational validity of preclinical findings, and should be conducted for all preclinical psychiatric research models.

9.
Transl Psychiatry ; 10(1): 38, 2020 01 27.
Article in English | MEDLINE | ID: mdl-32066696

ABSTRACT

Childhood maltreatment is highly prevalent and serves as a risk factor for mental and physical disorders. Self-reported childhood maltreatment appears heritable, but the specific genetic influences on this phenotype are largely unknown. The aims of this study were to (1) identify genetic variation associated with self-reported childhood maltreatment, (2) estimate SNP-based heritability (h2snp), (3) assess predictive value of polygenic risk scores (PRS) for childhood maltreatment, and (4) quantify genetic overlap of childhood maltreatment with mental and physical health-related phenotypes, and condition the top hits from our analyses when such overlap is present. Genome-wide association analysis for childhood maltreatment was undertaken, using a discovery sample from the UK Biobank (UKBB) (n = 124,000) and a replication sample from the Psychiatric Genomics Consortium-posttraumatic stress disorder group (PGC-PTSD) (n = 26,290). h2snp for childhood maltreatment and genetic correlations with mental/physical health traits were calculated using linkage disequilibrium score regression. PRS was calculated using PRSice and mtCOJO was used to perform conditional analysis. Two genome-wide significant loci associated with childhood maltreatment (rs142346759, p = 4.35 × 10-8, FOXP1; rs10262462, p = 3.24 × 10-8, FOXP2) were identified in the discovery dataset but were not replicated in PGC-PTSD. h2snp for childhood maltreatment was ~6% and the PRS derived from the UKBB was significantly predictive of childhood maltreatment in PGC-PTSD (r2 = 0.0025; p = 1.8 × 10-15). The most significant genetic correlation of childhood maltreatment was with depressive symptoms (rg = 0.70, p = 4.65 × 10-40), although we show evidence that our top hits may be specific to childhood maltreatment. This is the first large-scale genetic study to identify specific variants associated with self-reported childhood maltreatment. Speculatively, FOXP genes might influence externalizing traits and so be relevant to childhood maltreatment. Alternatively, these variants may be associated with a greater likelihood of reporting maltreatment. A clearer understanding of the genetic relationships of childhood maltreatment, including particular abuse subtypes, with a range of phenotypes, may ultimately be useful in in developing targeted treatment and prevention strategies.


Subject(s)
Child Abuse , Stress Disorders, Post-Traumatic , Child , Forkhead Transcription Factors , Genetic Predisposition to Disease , Genome-Wide Association Study , Genomics , Humans , Repressor Proteins , Self Report
11.
Cytokine X ; 2(2): 100027, 2020 Jun.
Article in English | MEDLINE | ID: mdl-33604555

ABSTRACT

There is mounting evidence of systemic inflammation in post-traumatic stress disorder (PTSD) and Parkinson's disease (PD), yet inconsistency and a lack of replicability in findings of putative biological markers have delayed progress in this space. Variability in performance between platforms may contribute to the lack of consensus in the biomarker literature, as has been seen for a number of psychiatric disorders, including PTSD. Thus, there is a need for high-performance, scalable, and validated platforms for the discovery and development of biomarkers of inflammation for use in drug development and as clinical diagnostics. To identify the best platform for use in future biomarker discovery efforts, we conducted a comprehensive cross-platform and cross-assay evaluation across five leading platform technologies. This initial assessment focused on four cytokines that have been implicated PTSD - interleukin (IL)-1ß, IL-6, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ. To assess platform performance and understand likely measurements in individuals with brain disorders, serum and plasma samples were obtained from individuals with PTSD (n = 13) or Parkinson's Disease (n = 14) as well as healthy controls (n = 5). We compared platform performance across a number of common analytic parameters, including assay precision, sensitivity, frequency of endogenous analyte detection (FEAD), correlation between platforms, and parallelism in measurement of cytokines using a serial dilution series. The single molecule array (Simoa™) ultra-sensitive platform (Quanterix), MESO V-Plex (Mesoscale Discovery), and Luminex xMAP® (Myriad) were conducted by their respective vendors, while Luminex® and Quantikine® high-sensitivity ELISA assays were evaluated by R&D System's Biomarker Testing Services. The assay with the highest sensitivity in detecting endogenous analytes across all analytes and clinical populations (i.e. the highest FEAD), was the Simoa™ platform. In contrast, more variable performance was observed for MESO V-plex, R&D Luminex® and Quantikine®, while Myriad's Luminex xMAP® exhibited low FEAD across all analytes and samples. Simoa™ also demonstrated high precision in detecting endogenous cytokines, as reflected in < 20 percent coefficient of variance (%CV) across replicate runs for samples from the healthy controls, PTSD patients, and PD patients. In contrast, MESO V-Plex, R&D Luminex® and Quantikine® had variable performance in terms of precision across cytokines. Myriad Luminex xMAP® could not be included in precision estimates because the vendor did not run samples in duplicate. For cross-platform performance comparisons, the highest cross-platform correlations were observed for IL-6 such that all platforms - except for Myriad's Luminex xMAP® - had strong correlations with one another in measurements of IL-6 (r range = 0.59 - 0.86). For the other cytokines, there was low to no correlation across platforms, such that reported measurements of IL-1ß, TNF-α, and IFN-γ varied across assays. Taken together, these findings provide novel evidence that the choice of immunoassay could greatly impact reported cytokine findings. The current study provides crucial information on the variability in performance between platforms and across immunoassays that may help inform the selection of assay in future research studies. Further, the results emphasize the need for performing comparative evaluations of immunoassays as new technologies emerge over time, particularly given the lack of reference standards for the quantitative assessments of cytokines.

13.
Database (Oxford) ; 20192019 01 01.
Article in English | MEDLINE | ID: mdl-31260040

ABSTRACT

The PTSD Biomarker Database (PTSDDB) is a database that provides a landscape view of physiological markers being studied as putative biomarkers in the current post-traumatic stress disorder (PTSD) literature to enable researchers to explore and compare findings quickly. The PTSDDB currently contains over 900 biomarkers and their relevant information from 109 original articles published from 1997 to 2017. Further, the curated content stored in this database is complemented by a web application consisting of multiple interactive visualizations that enable the investigation of biomarker knowledge in PTSD (e.g. clinical study metadata, biomarker findings, experimental methods, etc.) by compiling results from biomarker studies to visualize the level of evidence for single biomarkers and across functional categories. This resource is the first attempt, to the best of our knowledge, to capture and organize biomarker and metadata in the area of PTSD for storage in a comprehensive database that may, in turn, facilitate future analysis and research in the field.


Subject(s)
Databases, Factual , Metadata , Stress Disorders, Post-Traumatic , Biomarkers , Humans
14.
Alzheimers Dement ; 12(9): 1022-1030, 2016 09.
Article in English | MEDLINE | ID: mdl-27327540

ABSTRACT

Many disease-modifying clinical development programs in Alzheimer's disease (AD) have failed to date, and development of new and advanced preclinical models that generate actionable knowledge is desperately needed. This review reports on computer-based modeling and simulation approach as a powerful tool in AD research. Statistical data-analysis techniques can identify associations between certain data and phenotypes, such as diagnosis or disease progression. Other approaches integrate domain expertise in a formalized mathematical way to understand how specific components of pathology integrate into complex brain networks. Private-public partnerships focused on data sharing, causal inference and pathway-based analysis, crowdsourcing, and mechanism-based quantitative systems modeling represent successful real-world modeling examples with substantial impact on CNS diseases. Similar to other disease indications, successful real-world examples of advanced simulation can generate actionable support of drug discovery and development in AD, illustrating the value that can be generated for different stakeholders.


Subject(s)
Alzheimer Disease/drug therapy , Alzheimer Disease/physiopathology , Computer Simulation , Models, Neurological , Alzheimer Disease/diagnosis , Animals , Crowdsourcing , Databases, Factual , Drug Discovery/methods , Humans , Multiple Sclerosis/diagnosis , Multiple Sclerosis/physiopathology , Multiple Sclerosis/therapy , Public-Private Sector Partnerships , Schizophrenia/diagnosis , Schizophrenia/drug therapy , Schizophrenia/physiopathology
15.
Alzheimers Dement ; 12(9): 1014-1021, 2016 09.
Article in English | MEDLINE | ID: mdl-27238630

ABSTRACT

Massive investment and technological advances in the collection of extensive and longitudinal information on thousands of Alzheimer patients results in large amounts of data. These "big-data" databases can potentially advance CNS research and drug development. However, although necessary, they are not sufficient, and we posit that they must be matched with analytical methods that go beyond retrospective data-driven associations with various clinical phenotypes. Although these empirically derived associations can generate novel and useful hypotheses, they need to be organically integrated in a quantitative understanding of the pathology that can be actionable for drug discovery and development. We argue that mechanism-based modeling and simulation approaches, where existing domain knowledge is formally integrated using complexity science and quantitative systems pharmacology can be combined with data-driven analytics to generate predictive actionable knowledge for drug discovery programs, target validation, and optimization of clinical development.


Subject(s)
Alzheimer Disease/physiopathology , Brain/physiopathology , Models, Neurological , Alzheimer Disease/drug therapy , Animals , Brain/drug effects , Computer Simulation , Databases, Factual , Drug Discovery/methods , Humans
16.
Eur Neuropsychopharmacol ; 25(10): 1803-7, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26073278

ABSTRACT

Current limitations impeding on data reproducibility are often poor statistical design, underpowered studies, lack of robust data, lack of methodological detail, biased reporting and lack of open data sharing, coupled with wrong research incentives. To improve data reproducibility, robustness and quality for brain disease research, a Preclinical Data Forum Network was formed under the umbrella of the European College of Neuropsychopharmacology (ECNP). The goal of this network, members of which met for the first time in October 2014, is to establish a forum to collaborate in precompetitive space, to exchange and develop best practices, and to bring together the members from academia, pharmaceutical industry, publishers, journal editors, funding organizations, public/private partnerships and non-profit advocacy organizations. To address the most pertinent issues identified by the Network, it was decided to establish a data sharing platform that allows open exchange of information in the area of preclinical neuroscience and to develop an educational scientific program. It is also planned to reach out to other organizations to align initiatives to enhance efficiency, and to initiate activities to improve the clinical relevance of preclinical data. Those Network activities should contribute to scientific rigor and lead to robust and relevant translational data. Here we provide a synopsis of the proceedings from the inaugural meeting.


Subject(s)
Biomedical Research/methods , Drug Evaluation, Preclinical , Neurosciences , Psychopharmacology , Animals , Congresses as Topic , Drug Evaluation, Preclinical/methods , Europe , Information Dissemination/methods , Neurosciences/methods , Periodicals as Topic , Practice Guidelines as Topic , Psychopharmacology/methods , Reproducibility of Results
17.
Pharmacogenet Genomics ; 25(4): 173-85, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25714000

ABSTRACT

OBJECTIVE: Clinical response to antipsychotic medications can vary markedly in patients with schizophrenia. Identifying genetic variants associated with treatment response could help optimize patient care and outcome. To this end, we carried out a large-scale candidate gene study to identify genetic risk factors predictive of paliperidone efficacy. PATIENTS AND METHODS: A central nervous system custom chip containing single nucleotide polymorphisms from 1204 candidate genes was utilized to genotype a discovery cohort of 684 schizophrenia patients from four clinical studies of paliperidone extended-release and paliperidone palmitate. Variants predictive of paliperidone efficacy were identified and further tested in four independent replication cohorts of schizophrenic patients (N=2856). RESULTS: We identified an SNP in ERBB4 that may contribute toward differential treatment response to paliperidone. The association trended in the same direction as the discovery cohort in two of the four replication cohorts, but ultimately did not survive multiple testing corrections. The association was not replicated in the other two independent cohorts. We also report several SNPs in well-known schizophrenia candidate genes that show suggestive associations with paliperidone efficacy. CONCLUSION: These preliminary findings suggest that genetic variation in the ERBB4 gene may differentially affect treatment response to paliperidone in individuals with schizophrenia. They implicate the neuregulin 1 (NRG1)-ErbB4 pathway for modulating antipsychotic response. However, these findings were not robustly reproduced in replication cohorts.


Subject(s)
Antipsychotic Agents/administration & dosage , Genetic Association Studies/methods , Isoxazoles/administration & dosage , Pyrimidines/administration & dosage , Receptor, ErbB-4/genetics , Schizophrenia/drug therapy , Adolescent , Adult , Aged , Child , Child, Preschool , Humans , Middle Aged , Neuregulin-1/genetics , Paliperidone Palmitate , Polymorphism, Single Nucleotide , Schizophrenia/genetics , Young Adult
18.
Alzheimers Dement ; 10(5 Suppl): S430-52, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25341459

ABSTRACT

With increasing numbers of people with Alzheimer's and other dementias across the globe, many countries have developed national plans to deal with the resulting challenges. In the United States, the National Alzheimer's Project Act, signed into law in 2011, required the creation of such a plan with annual updates thereafter. Pursuant to this, the US Department of Health and Human Services (HHS) released the National Plan to Address Alzheimer's Disease in 2012, including an ambitious research goal of preventing and effectively treating Alzheimer's disease by 2025. To guide investments, activities, and the measurement of progress toward achieving this 2025 goal, in its first annual plan update (2013) HHS also incorporated into the plan a set of short, medium and long-term milestones. HHS further committed to updating these milestones on an ongoing basis to account for progress and setbacks, and emerging opportunities and obstacles. To assist HHS as it updates these milestones, the Alzheimer's Association convened a National Plan Milestone Workgroup consisting of scientific experts representing all areas of Alzheimer's and dementia research. The workgroup evaluated each milestone and made recommendations to ensure that they collectively constitute an adequate work plan for reaching the goal of preventing and effectively treating Alzheimer's by 2025. This report presents these Workgroup recommendations.


Subject(s)
Alzheimer Disease/prevention & control , Alzheimer Disease/therapy , Health Policy , Alzheimer Disease/epidemiology , Alzheimer Disease/physiopathology , Animals , Biological Ontologies , Biomarkers/metabolism , Drug Discovery , Humans , Patient Selection , Public-Private Sector Partnerships , Translational Research, Biomedical/methods , United States , United States Dept. of Health and Human Services , Voluntary Health Agencies
19.
Ann N Y Acad Sci ; 1313: 1-16, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24754377

ABSTRACT

Epidemiological projections of the prevalence of Alzheimer's disease (AD) and related dementias, the rapidly expanding population over the age of 65, and the enormous societal consequence on health, economics, and community foretell of a looming global public health crisis. Currently available treatments for AD are symptomatic, with modest effect sizes and limited impact on longer term disease outcomes. There have been no newly approved pharmaceutical treatments in the last decade, despite enormous efforts to develop disease-modifying treatments directed at Alzheimer's-associated pathology. An unprecedented collaborative effort of government, regulators, industry, academia, and the community at-large is needed to address this crisis and to develop an actionable plan for rapid progress toward successfully developing effective treatments. Here, we map out a course of action in four key priority areas, including (1) addressing the fundamental mechanisms of disease, with the goal of developing a core set of research tools, a framework for data sharing, and creation of accessible validated and replicated disease models; (2) developing translational research that emphasizes rapid progress in disease model development and better translation from preclinical to clinical stages, deploying leading technologies to more accurately develop predictive models; (3) preventing AD through the development of robust methods and resources to advance trials and creating fundamental resources such as continuous adaptive trials, registries, data repositories, and instrument development; and (4) innovating public/private partnerships and global collaborations, with mechanisms to incentivize collaborations and investments, develop larger precompetitive spaces, and more rapid data sharing.


Subject(s)
Alzheimer Disease/prevention & control , Alzheimer Disease/therapy , Biomedical Research/trends , Translational Research, Biomedical/trends , Cooperative Behavior , Humans
20.
Article in English | MEDLINE | ID: mdl-24303286

ABSTRACT

tranSMART is an emerging global open source public private partnership community developing a comprehensive informatics-based analysis and data-sharing cloud platform for clinical and translational research. The tranSMART consortium includes pharmaceutical and other companies, not-for-profits, academic entities, patient advocacy groups, and government stakeholders. The tranSMART value proposition relies on the concept that the global community of users, developers, and stakeholders are the best source of innovation for applications and for useful data. Continued development and use of the tranSMART platform will create a means to enable "pre-competitive" data sharing broadly, saving money and, potentially accelerating research translation to cures. Significant transformative effects of tranSMART includes 1) allowing for all its user community to benefit from experts globally, 2) capturing the best of innovation in analytic tools, 3) a growing 'big data' resource, 4) convergent standards, and 5) new informatics-enabled translational science in the pharma, academic, and not-for-profit sectors.

SELECTION OF CITATIONS
SEARCH DETAIL
...